THERMODYNAMICS AND ADSORPTION STUDIES OF DYE (RHODAMINE-B) ONTO NATURAL DIATOMITE

Menderes KOYUNCU¹, Ali Rıza KUL²

¹ Department of Textile, Van vocational School, Yuzuncu yil University, Van /Turkey; menderes@yuy.edu.tr (M. Koyuncu)
² Department of Chemistry, Science Faculty, Yuzuncu yil University, Van /Turkey

Abstract: Thermodynamics and adsorption studies were conducted with a dye of Rhodamine-B on natural diatomite. Adsorption of the dye was investigated with an initial dye concentration at pH 8±0.2, 303, 313 and 323 K. The adsorption experiments were carried out isothermally at three different temperatures. The Langmuir and Freundlich isotherm models were used to describe the equilibrium data and the results were discussed in details. The kinetic data agreed with the pseudo-first order model with rate constants (k₂) in the range of 3.05–1.59.10⁻¹ g/mg min. The thermodynamic parameters such as standard free energy, entropy change and enthalpy were calculated for natural diatomite. These values showed that adsorption of Rhodamine-B on natural diatomite was a spontaneous and endothermic process.

Keywords: diatomite, Rhodamine B, adsorption, thermodynamics, Langmuir, Freundlich, isotherm

Introduction

Synthetic dyes are widely used in many industries such as textiles, paper, plastics. Wastewater from textile is polluted by dyes. These colored effluents are known to be carcinogenic, and highly toxic (Uzun, 2006; Ertaş et al., 2010). The unwanted dye pollutions have to be removed from wastewaters before being discharged into the environment. For this reason, the most common methods available for color removal from waste water are coagulation and flocculation (Moi Pang, et al., 2001) and biomaterials (Papic et al., 2004). The removal of dyes from the aqueous system was a technological challenge for many decades.

A considerable research was conducted on the removal of dyes from wastewater effluent using adsorption techniques with different adsorbents such as activated carbon (Thio Christine et al., 2007), bentonite (Tahir and Nassem, 2007; Koyuncu, 2009), sepiolite (Doğan et al., 2006), silica (Blitz, 2007; Jesionowski, 2005), fly ash (Eren and Acar, 2006), palm-fruit bunch particles (Mamdouh and Yehiam, 1997), diatomite
Diatomite is an amorphous sedimentary rock, which has an amorphous form of silica (SiO$_2$·nH$_2$O). Diatomite contains a small amount of microcrystalline material, and is available in various locations around the world. Diatomite also received attention for its unique combination of physical and chemical properties such as high permeability and porosity, small particle size, large surface area, low thermal conductivity, chemical stability, and its low-cost material for the color removal of textile wastewater (Chan et al., 2011). The silica surface contains silanol groups that spread over matrix of the silica. The silanol group is an active one, which tends to reach many polar organic compounds and various functional groups (Al-Ghouti et al., 2003; Khraisheh et al., 2005; Al-Ghouti et al., 2005). A preliminary study appointed the applicability of using diatomite as a low-cost material for removal of textile wastewater. The diatomite surface is terminated by OH groups and oxygen bridges (Si-OH, Si′-OH), which act as adsorption sites. In the adsorption processes, it is important to know characteristic of these different adsorption sites (Khraisheh et al., 2005).

In this study, different temperatures of adsorption onto diatomite were attempted, and the effect on dye removal from the aqueous solution was investigated. The experiments were conducted at pH 8±0.2, and the initial dye concentration in the temperature range of 303–323 K was tested. The adsorption capacity and mechanisms as well as the thermodynamic parameters were investigated.

Material and methods

Materials

Diatomite samples were obtained from the Caldiran region of Van/Turkey. The chemical analysis of the diatomite obtained by a XRF technique revealed a chemical composition. The physical properties of the diatomite are given in Table 1. The natural diatomite sample, which was powdered by pounding in a porcelain mortar, was washed with distilled water and dried in an oven at 105 °C. Rhodamine-B (Rh-B) as a dye was obtained from textile corporation (İstanbul/Turkey). The structural form of Rhodamine-B is given in Fig. 1. A Rh-B has the maximum absorption wavelength at 553.7 nm. The maximum absorption wavelength of Rh-B was determined by finding out absorbance at the characteristic wavelength using a double beam UV-visible spectrophotometer.
Thermodynamics and adsorption studies of dye (Rhodamine-B) onto natural diatomite

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>69.70</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.50</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.40</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.65</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.80</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.40</td>
</tr>
<tr>
<td>Loss on ignition</td>
<td>11.55</td>
</tr>
</tbody>
</table>

Physical properties

Color: Cream
pH 8±0.2
Particle size 63 µm

Fig. 1. Chemical structure of Rhodamine B

Adsorption experiments

Adsorption was carried out on RhB by mixing 1.0 g of the natural diatomite samples with initial concentrations of 20 mg/dm³, 40 mg/dm³, and 60 mg/dm³. The mixtures were shaken in a thermally controlled automatic shaker at 120 rpm, at temperatures of 303 K, 313 K, and 323 K for 15, 30, 60, 90, and 120 minutes until the equilibrium conditions were reached. The concentration of the dye in the aqueous solutions after adsorption was measured by using a UV-vis (Shimadzu UV-Vis 1240) spectrophotometer. The measurements of the pH values of the dye solutions were determined by using a pH 211 microprocessor pH meter (HANNA Instruments). The percentage of adsorption was estimated using following equation (Xiangheng et al., 2012):

\[
\text{% Adsorption} = \left(\frac{C_i - C_e}{C_e} \right) \times 100
\]

where \(C_i \) and \(C_e \) are initial and equilibrium concentrations (mg/dm³), respectively.
Thermodynamic parameters

The thermodynamic parameters such as standard Gibbs fee energy (ΔG^0), entropy change (ΔS^0) and enthalpy (ΔH^0) were calculated using following equations (Laidler and Meiser, 1999; Caliskan et al., 2011):

\[
K_d = \frac{C_i - C_e}{C_e} \cdot \frac{V}{m} \quad (2)
\]

\[
\ln K_d = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT} \quad (3)
\]

\[
\Delta G^0 = \Delta H^0 - T\Delta S^0 \quad (4)
\]

where K_d is the equilibrium constant, C_i initial concentration (mg/dm3), C_e equilibrium concentration, V volume (cm3), m of the diatomite (g), T (Kelvin), and R gas constant (8.314 J/mol). The changes in enthalpy (ΔH^0) and entropy (ΔS^0) were determined from the slope and intercept of the plots of $\ln K_d$ versus $1/T$. The Gibbs free energy (ΔG^0) was calculated using Eq (4).

Kinetic studies

Kinetic studies were carried out using a thermostated shaker with polyethylene tubes at 303 K. A 0.1 g of natural diatomite was added to 10 cm3 of RhB solution (20, 40 and 60 mg/dm3) and at 303 K temperature between 1–150 minutes (time required to achieve an equilibrium conditions). The samples were analyzed by using the UV-vis (Shimadzu UV-Vis 1240) spectrophotometer. The adsorption experiments were conducted by using three different initial concentrations of RhB solution (20, 40 and 60 mg/dm3). The amounts of RhB adsorbed at various time periods (q_t) were determined by:

\[
q_t = \frac{(C_i - C_t)V}{m} \quad (5)
\]

where C_i is the initial concentration of RhB, C_t concentration of RhB present in the aqueous solution after time t (min), V volume of solution (dm3), and m is a mass of adsorbent (mg).

Results and discussion

Effect of initial dye concentration

The relative RhB removal by the adsorbents as a function of RhB concentration was studied (ranging from 20 to 60 mg/dm3, at pH 8 ± 0.2, at 323 K). Figure 2 shows the effect of the initial dye concentration on adsorption. The equilibrium adsorption ca-
capacity increases with the increasing the initial RhB concentration. The RhB concentrations of 20 mg/dm3, 40 mg/dm3, and 60 mg/dm3 increase the removal to 78.97%, 82.19%, and 85.51%, respectively. This increase in the proportion of adsorption may be probably due to the equilibrium shift during the adsorption process, and which may result from the increased number of ions competing for the available binding sites on the surface of diatomite (Franco, 2010; Xue et al., 2010; Çalışkan et al., 2011). Adsorption of the dye was a little increase for concentrations higher than 60 mg/dm3. It indicates that the saturation of adsorption sites was achieved. It can be seen that the rate of adsorption decreases with time and gradually reaches equilibrium. In Figure 2, where measurements were undertaken over a period of 15-120 min in all cases, the contact time of 120 min was sufficient to ensure, that the adsorption equilibrium was attained. The arithmetic mean of adsorption and standard deviation (σ) were found to be 20 mg/dm3 73.71 and 7.57 for 20 mg/dm3, 76.94, and 8.80 for 40 mg/dm3, 79.26, and 8.88 for 60 mg/dm3, respectively.

![Figure 2](image.png)

Fig. 2. Effect of contact time and initial dye concentration on dye adsorption.

Natural diatomite dose 1g/ dm3 (pH 8 ± 0.2, at 323 K)

Effect of temperature

The temperature has two major effects on the adsorption process. Higher temperature increases the rate of diffusion of the adsorbate molecules across the external boundary layer and in the internal pores of the adsorbent particle, owing to decrease in the viscosity of the solution. In addition, temperature changing will change the equilibrium capacity of the adsorbent for the particular adsorbate. In this case of study, a series of experiments were conducted at 303, 313, and 323 K to study the effect of temperature on the adsorption rate.

Adsorption of Rh-B onto diatomite at 303, 313, and 323 K are shown in Fig. 3. The results indicate that adsorption increases with the temperature. It indicates the endothermic nature of the adsorption process. Similar results were also reported for Rh-B
adsorption onto acid-heat activated rectorite (Xiangheng et al., 2012), kaolinite (Khan and et al., 2012) and calcined diatomite (Yusan et al., 2012).

The standard deviations (σ) at 303, 313, and 323 K were found to be 0.55, 7.72 and 0.98, 14.23 and 1.25, and 15.12, respectively.

![Fig. 3. Effect of temperature on adsorption of Rh-B onto natural diatomite](image)

Adsorption isotherms

Langmuir isotherm

In the solid/liquid adsorption process, adsorption of the solute is usually characterized by either mass transfer (boundary layer diffusion) or intraparticle diffusion or even both (Ghosh and Bhattacharyya, 2002).

The adsorption data of Rh-B removal from natural diatomite was analyzed by the Freundlich and Langmuir isotherm models. The Langmuir isotherm model is valid for monolayer adsorption. The linear equation of the Langmuir isotherm is (Dogan et al., 2006):

$$\frac{C_e}{q_e} = \frac{1}{bq_m} + \frac{1}{q_m} C_e$$ \hspace{1cm} (6)

where, C_e is the equilibrium concentration of RhB in the solution, q_e amount of Rh-B adsorbed at equilibrium, q_m Langmuir adsorption capacity, and b Langmuir constant.

Figure 4 shows the relationship between C_e/q_e and C_e for the adsorption of RhB onto the natural diatomite at 303, 313, and 323 K. The slope calculation and intercept of the linear plots give the values of q_m and b.
Thermodynamics and adsorption studies of dye (Rhodamine-B) onto natural diatomite

The Langmuir adsorption isotherm plots for adsorption of RhB onto natural diatomite at different temperatures are shown in Fig. 4. The values of the Langmuir constants and coefficient determination R^2 are given in Table 1. The Langmuir adsorption capacity (q_m) was found to be 8.13, 9.52, and 10.21 mg/g at different temperatures (303, 313 and 323 K). The essential characteristic of the Langmuir isotherm can be expressed by the equilibrium parameter and dimensionless constant (R_L) using equation:

$$R_L = \frac{1}{1 + bC_o}$$ \hspace{1cm} (7)

where R_L can be $0 < R_L < 1$.

Table 1. Isotherm parameters for adsorption of RhB onto natural diatomite

<table>
<thead>
<tr>
<th>Model</th>
<th>Isotherm Constants</th>
<th>303 K</th>
<th>313 K</th>
<th>323 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>q_m</td>
<td>8.13</td>
<td>9.52</td>
<td>10.21</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>0.35</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>R_L</td>
<td>0.14</td>
<td>0.21</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Freundlich</td>
<td>K_f</td>
<td>2.45</td>
<td>2.73</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>1.61</td>
<td>1.48</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

The dimensionless separation factor (R_L) was found to be in the range of 0 to 1, indicating that adsorption of Rhodamine-B is favorable for natural diatomite (Freundlich, 1906; Ho and Mckay, 1999; Rahchamani and Zavvar Mousavi, 2011).
The adsorption capacity \(q_m \) of natural diatomite was found to be 10.21 mg/g. Similar results were also reported for Rh-B adsorption, such as banana pith (Anandkumar and Madal, 2011), cellulose-based (Aksu and Dönmez, 2003) acid activated mango (Namasivayan et al., 1993) and activated carbon (Annadurai et al., 2002).

Freundlich isotherm

The Freundlich isotherm assumes an empirical equation based on the heterogeneous surface of adsorbent. The linear form of the Freundlich isotherm is expressed as (Khan et al., 2011):

\[
\log q_e = \log K_f + n \log C_e
\]

where \(K_f \) is the Freundlich coefficient related to adsorption capacity, and \(n \) relates to adsorption intensity. The values of the Freundlich constants were obtained from the linear correlations between the values of \(\log q_e \) and \(\log C_e \). The values of \(K_f \), \(n \) and coefficient determination \(R^2 \) are collected in Table 1. In the Freundlich adsorption constant, \(n \) should be between 1 and 10 for beneficial adsorption (Unuabonah et al., 2007; Vasu, 2008). Table 1 shows that \(n \) values are in the range of 1 to 10 for natural diatomite and \(R^2 \) is 0.99. It means that adsorption of Rh-B on natural diatomite can be described by the Freundlich model.

![Freundlich adsorption isotherm plots for adsorption of RhB onto natural diatomite at different temperatures](image)

Fig. 5. Freundlich adsorption isotherm plots for adsorption of RhB onto natural diatomite at different temperatures

Thermodynamic parameters of adsorption

The thermodynamic parameters \((\Delta G^0, \Delta H^0 \text{ and } \Delta S^0) \) are presented in Table 2. The Gibbs free energy is calculated for adsorption of Rh-B on natural diatomite using Eq. (4). The values of \(\Delta H^0 \) and \(\Delta S^0 \) were determined from the slope and intercept from the plot of \(1/T \) versus \(\ln K_d \) given in Eq. (3), respectively.
The ΔG^0 value is negative for Rh-B on natural diatomite and it indicates that adsorption is spontaneous. The ΔG^0 decreases with temperature. Furthermore, better adsorption is obtained at higher temperatures (Khan et al., 2012). The positive values of the enthalpy change (ΔH^0) indicates that the adsorption process is endothermic. When ΔH^0 is lower than 40 kJ/mol the type of adsorption can be accepted to be a physical process. It indicates that adsorption is physical by nature and involves weak forces of attraction (Khan et al., 2012; Rahchamani et al., 2011). The positive value of ΔS^0 shows the increasing randomness at the solid/solution interface during adsorption of RhB on the adsorbents. The positive mean values of ΔS^0 may be due to some structural changes in the adsorbate and adsorbents during the adsorption process from the aqueous solution (Unuabonah et al., 2007).

<table>
<thead>
<tr>
<th>Initial Concentration (mg/dm3)</th>
<th>ΔH^0 (kJ/mol)</th>
<th>ΔS^0 (kJ/mol K)</th>
<th>ΔG^0 (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>303 K</td>
</tr>
<tr>
<td>20</td>
<td>7.68</td>
<td>25.81</td>
<td>-0.140</td>
</tr>
<tr>
<td>40</td>
<td>6.70</td>
<td>24.74</td>
<td>-0.800</td>
</tr>
<tr>
<td>60</td>
<td>7.10</td>
<td>25.11</td>
<td>-0.508</td>
</tr>
</tbody>
</table>

Adsorption kinetics

The experimental data relating to adsorption of RhB onto natural diatomite was investigated using the Lagergren pseudo-first and pseudo-second order equation (Aivalioti et al., 2010; Chan et al., 2011):

$$\log (q_e - q_t) = \log q_e - \frac{k_1 t}{2.303}$$

(9)

$$\frac{t}{q_t} = \frac{1}{k_2 q^2} + \frac{1}{q_e} t$$

(10)

where, q_e is the amount of Rh-B adsorbed at equilibrium (mg/g), q_t amount of Rh-B adsorbed at various times, t time of adsorption duration, and k_1 is a rate constant of the equation (min$^{-1}$).

The calculations were done for 20, 40 and 60 mg/dm3 RhB solution initial concentration at 303 K. The k_1 and q_e were calculated from the slope and intercept of the plots of $\log (q_e - q_t)$ versus t according to the pseudo-first-order model (Fig. 6) and t/q_t versus t according to the pseudo-second-order model (Fig. 7) as well as q_e and k_2 from the slope and intercept were calculated. The kinetic parameters are given in Table 3. The q_e values calculated from the pseudo-second-order model are match q_e experimental results. The R^2 values were between 0.995 and 0.998. The linear regression correlation coefficient values for pseudo-second-order model were found to
be higher than those of the first-order model. Higher R^2 values confirm that the adsorption data are well represented by the pseudo-second-order kinetics. The calculated q_e values also agree very well with the experimental data in the case of pseudo-second-order kinetics model. Similar kinetic results were reported in adsorption of BTEX, MTBE and TAMİ by natural and modified diatomite (Aivalioti et al., 2010), comparative study of lead sorption onto natural perlite, dolomite and diatomite (Irani et al., 2011), adsorption behavior of direct Red 12B and rhodamine B from water onto surfactant modified coconut pith (Sureshkumar and Namasivayam, 2008) and application of activated carbon derived from scrap tires for adsorption of Rhomine B (Shuangxi and Tan zhu, 2010).

![Fig. 6. Pseudo-first-order plots for adsorption of Rhodamine B onto natural diatomite](image1)

![Fig. 7. Pseudo-second-order plots for adsorption of Rhodamine B onto natural diatomite](image2)

<table>
<thead>
<tr>
<th>Kinetic model</th>
<th>Kinetic parameters</th>
<th>Concentration (mg/dm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

The adsorption of the dye (Rhodamine-B) by natural diatomite was investigated. It was found that natural diatomite is an effective adsorbent for removal of Rh-B from wastewater due to its short adsorption time and its natural pH (8.0±2). The thermodynamic parameters (Δ\(G^0\), Δ\(H^0\) and Δ\(S^0\)) were calculated. It was shown that adsorption of Rh-B dye by natural diatomite is both endothermic and spontaneous. The removal of Rh-B by the natural diatomite was controlled by the initial dye concentration at natural pH and different temperatures. The adsorption data were well fitted by both Langmuir and Freundlich models. The maximum adsorption was found to be 10.21 mg/g (for initial concentration 20 mg/dm\(^3\), temperature 323 K). The adsorption kinetics of Rh-B can be well described by the pseudo-second-order model. As a result, the natural diatomite can be used as a highly effective low-cost adsorbent for the removal of Rh-B from an aqueous solution.

References

ANANKUMAR J., MADAL B., 2011, Adsorption of Chromium (V) and Rhodamine B by surface modified tannery waste kinetic, mechanistic and thermodynamic studies, Jhazmat, 186 (2–3), 1088–1096.

FRANCO, F., 2010, Adsorption of methylene blue on magnesia silicate; kinetics, equilibria and comparison with other adsorbents, J. Environ. Sci. 22, 467–473.

JESIONOWSKI T., 2005, Characterization of pigments obtained by adsorption of C.I basic blue 9 and C.I acid orande 52 dyes onto silica particles precipitated via the emulsion route, Dyes and Pigments. 67, 81–92.

UZUN I., 2006, Kinetics of the adsorption of reactive dyes by chitosan, Dyes and pigments, 70 (2) 76–83.

