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Distribution curves of properties of materials (size, density, hydrophobicity, etc.) are important 
for characterization and controlling separation results. Frequently, the mass-based size distribution 
curves are linearized using various functions including those of Rosin-Rammler, Gates-Gaudin-
Schumann, and Gaudin-Meloy. In this paper, a fractal approach was tested for linearization of the size 
distribution curves. It was shown in the paper that the three-dimensional (3D) fractal linearization 
equation is the same as the Gates-Gaudin-Schumann formula. It was also shown that area-based 2D 
fractal can be used for linearization of the size distribution curves provided that an appropriate area, 
on which the sample is spread, is determined. It was also shown that in some cases more than one 
fractal is necessary for linearization of the size distribution curve.  
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INTRODUCTION 

 
Knowledge of distribution of particulate material properties such as density, size, 

hydrophobicity, magnetic susceptibility, etc., is important in many industrial 
applications including cement, food, pharmaceuticals, cosmetics, pigment, fertilizers, 
and mineral processing. The distribution of the properties is usually plotted in a 
graphical form as population or equivalent quantity (cumulative or non-cumulative) 
versus the value of the feature of particles. It is also popular to make the distribution 
plots linear. Different mathematical formulas and approaches have been suggested to 
make linear the distribution curves, especially the size distribution. Selected formulas 
used for linearization of particle size distribution are given in Table 1. The formulas 
may contain one, two or more fitting parameters. 

Another approach to make the size distribution curve a line is the use of fractals. 
The fractal approach has been successfully applied to describe  irregular particles 
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(Chermant and Coster, 1978; Flook, 1978; Whalley and Orford, 1982; Kaye, 1981; 
1984), adsorption phenomena on irregular surfaces (Nowak, 1993), impedance 
response of rough electrodes (Nowak, 1993), rock porosity and fracture of surfaces 
(Kaye, 1984), bioprocessing of ores (Kaye,1985), computer simulation of  flocs (Tang, 
2002), and others.  
 

Table 1. Selected functions applied for linearization of size distribution curves. Symbols n, s, 
and S stand for constants (Kelly and Spottiswood, 1982; Drzymala, 2001) 

Name  
Σλ (%) =  

(cumulative mass fraction (or percent) 
passing a given d)  

Meaning of d* 

Rosin–Rammler or Weibull 1 – exp[–(d/d*)s] d value at Σλ = 0.632 

Gates–Gaudin–Schumann [d/d*]n maximum d value 

Broadbent–Callcott 1 – exp[–(d/d*)]/(1 – exp(–1) maximum d value 

Gaudin–Meloy 1 – [1 – (d/d*)]n maximum d value 

Log-probability erf [ln(d/d*)/σ],   erf – error function,σ – 
geometric standard deviation   median d value 

Harris  1 – [1 – (d/d*)S]n maximum d value 

 
Tyler and Wheatcraft (1992) proposed application of three-dimensional (3D) 

fractals for linearization of mass-based size distribution curves. They developed 
normalized function relating mass (weight) of a size fraction of particles with the sieve 
diameters and 3D-fractal dimension (D3) as follows:  
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where M(D<d) is the cumulative mass of particles having size D smaller than a 
considered comparative sieve size d, Mt is the total mass of sample (for 
normalization), and dmax is the maximum screen size. According to Tyler and 

Wheatcraft (1992) a plot of  
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d  in a log-log form yields a 

linear plot with 3D-fractal dimension D3, related to the line slope coefficient n, where 
n=3-D3. Applying Eq. 1 for any mass-based size distribution data, 3D-fractal 
dimension D3 can be determined. A comparison of the 3D-fractal function given by 
Eq. 1 with other traditional linearization equations shown in Table 1 indicates that Eq. 
1 is the same as the Gates-Gaudin-Schuman (Eq. 2 in Table 1) formula traditionally 
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used for the linerarization. This indicates that the Gates-Gaudin-Schuman equation is a 
fractal and the slope (n) of the Gates-Gaudin-Schuman line equals 3-D3.  

Another approach to make linear size distribution curves using the fractal concept 
was proposed by Hargrave et. al. (1998) and is based on a 2D fractal. They used 
scanning image analyses to express air bubbles distribution in flotation froth using a 
general equation: 

 
 )2( 2Dc −= αβ   (2) 
 
where β is the normalized area of bubbles having diameters less than a given 
normalized size and which is calculated from: 
 

) cell flotation the of view top the of (area view of field of area total
 diameter normalized diameters having bubbles of area αβ ,1 >

−=    (3) 

 
where C is a constant, D2 is the 2D-fractal dimension, and α is the normalized bubble 
size determined by dividing a given bubble diameter (d) by the maximum bubble 
diameter (dmax ).  

Having 2D and 3D analyses of particles is not always possible to accurately 
linearize the size distribution. In the case of the 3D-fractal analysis, sometimes two or 
more curves are produced while the results of linearization of particles size 
distribution with the 2D-fractal analysis depend on the area on which a sample of the 
particles is spread for analysis. Therefore, the goal of this study is to work out a 
procedure for 2D-fractal linearization of the distribution curves.  
 
 

TRADITIONAL VERSUS 2D FRACTAL GEOMETRY 
 

In classical geometry, the integer dimensions 0, 1, 2, and 3 are known to express 
point, line, area, and volume, respectively. Thus, a dimension of an object is the 
number of coordinates required to express the position of a certain point located in this 
object. In fractal geometry of Mandelbrot (1977, 1983), it is assumed that the 
dimensions does not have to be integers. They can be any real value from 0 to 3. The 
fractal dimension improves the description of irregular objects. For example, lines can 
be described by fractal geometry to have dimension of 1+x where 0≤x<1, and x = 0 
for straight lines, and any value in-between for zigzag lines. At the same time, areas of 
uniform shapes have a Euclidean dimension of two, while they can assume values 
between one and two considering the fractal concept. This is also valid for objects 
occupying space. The Euclidean dimension is usually three while their fractal 
dimension can be in the range from two to three. Figure 1 shows Euclidean versus 
fractal dimensions for line, area and volume of objects.  
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Fractal dimension =3 
Traditional dimension =3 

 
 
 
Fractal dimension =2.65 
Traditional dimension =3 

 
Fig. 1. Fractal versus Euclidean dimensions expressing line, area, and volume objects 

 
There are various methods to determine the fractal dimension. The basic concept 

used in all techniques is based on a power-law relationship. Such techniques include 
the parallel-line (Hyslip and Vallejo, 1997), divider (Hyslip and Vallejo, 1997), 
random walk (Kaye, 1995), in addition to the Sierpinski carpet method (Kaye, 1988; 
Hargrave et al., 1998). The later one depends on creating similar shapes (triangles, 
squares, circles etc.) called fractals packed in a given space, called the Sierpinski 
carpet, according to a certain rule. Figure 2 shows the Sierpinski carpet having the 
constructor (main carpet) (a), generator (shape and size of the first entity) (b), and first 
(c) and second (d) iteration algorithms. The mathematical form to express the area-
based (2D) fractal dimension for the Sierpinski carpet is given by:  

 
 D2=ln(N)/ln(1/r)  (4) 
 
where D2 is the 2D-fractal dimension, N= the total number of the un-removed squares, 
usually constant for each iteration step (in this case N = 8) and r = linear ratio of 
similarity between repeated shapes present in two subsequent iterations (in this case r 
= 1/3). From a theoretical point of view, for ideal systems, both N and r can be 
evaluated, and thus the fractal dimension D2 can be calculated. For real objects, the 
determination of both N and r is ambiguous arising from the difficulties to find fractal 
dimension D2. Therefore, there is a need for explicit mathematical steps to make it 
easier to calculate fractal dimension D2.      
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a) Sierpinski’s carpet constructor 

1unit

 
b) Sierpinski’s carpet generator 

 
c) Sierpinski’s carpet first iteration 

 
d) Sierpinski’s carpet second iteration 

 
Fig. 2. The Sierpinski carpet showing up to the second iteration order having fractal dimension of 1.8928 

(after Hargrave et al., 1998) 
 

Further iterations on the Sierpinski carpet shown in Fig. 2 can lead to infinite 
number of squares with different sizes causing the carpet area to vanish. By 
considering such squares (objects that may also have any shape) and “shaking the 
carpet” one gets objects with different projected areas (Fig. 3) spread over the base of 
the Serpinski carpet (Fig.3b). Therefore, the Sierpinski carpet can be used to represent 
area-based size distribution. The correlation between the size distribution and 2D-
fractal dimension represented by the Sierpinski carpet is similar to Hargrave et al., 
(1998) approach for calculation of air bubbles distribution in a given froth. Except that 
the area of the top view of the flotation cell is constant providing constant background. 
In the case of particles, the background (the field over which the sample of particles 
was spread) it can be any area. In Eq. 3, β is cumulative area of the particulates with 
the size less than normalized size (α). Thus, β can be calculated utilizing Eq. 5.  

 

)projection particles from resulted area or totalcarpet   theof area (total A
) , normalizedan greater th particles  ( 1

t

αβ diameterofareaAc
−=    (5) 

 
To obey Eq. 2 and find Sierpinski's carpet 2D-fractal dimension (D2) representing a 

given size distribution, we need to know Ac and At which are difficult to calculate 
from the fractal point of view. To solve this issue, one can assume a certain size 
distribution given on the mass basis, and according to fractal geometry area (Ai) 
resulted from projection of all particles found in the ith size fraction and use equation: 

3 units 
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 Ai=θ (N Aoi) (6) 
 
where N = number of particles in that size fraction, and Aoi is the area of one particle 
in this size fraction based on average diameter d, and θ is the packing factor. 
Considering the particles irregularity and taking into account the fractal dimension 
definition, Aoi can be calculated as:  
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Fig. 3. Sierpinski’s carpet 2D-fractal (a). Sierpinski’s carpet after “shaking” (b), size distribution 
 curve (c) based on Fig.3b 

 
 Aoi=δ di

D2 (7) 
 
where δ = shape factor or irregularity factor which can be also named fractal prefactor, 
and D2 is the area-based fractal dimension. At the same time the number of particles in 
a given size fraction (N) can be given by the following equation: 
 
 N=mi/moi=mi /(v0i ρ)=mi/(Aoi di

D2/2 ρ)  (8) 
 
where mi is the material mass fraction found in the ith size class, moi and voi are the 
mass and volume of one particle located in the ith size class, respectively. In Eq. 8, ρ is 
the bulk density of the material under analyses (assumed to be constant for all size 
classes). Inserting Eqs 7 and 8 in Eq. 6, one can get the projected area resulted from 
the ith size fraction: 

 )( 2/2D
id
mAi i

ρ
θ

=   (9) 

 
Thus, the total projected area (At) for the whole size distribution can be calculated 

according to the general form (given by Eq. 10) assuming the packing factor to be 
constant for all the size classes:  
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and the cumulative area greater than normalized α can be given according to  the 
following equations:  
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Inserting Eqs 10 and 13 in Eq. 5 and taking into consideration normalized diameter 
(αi=di/dmax), one can determine the general equation for calculating β:  
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Equation 14 can not be solved analytically because it contains two unknowns, that 

is β and 2D-fractal dimension D2. It can be solved by trial and error, and there exist 
only one value of D2 which is correct for a given size distribution. It should agree with 
Eq. 2, rewritten in the form below: 

 constD =− 22α
β   (15) 

 
Combining results of Eq. 14 with the conditional Eq. 15 and applying trial and 

error numerical analyses, one can obtain the fractal dimension characterizing a certain 
size distribution range. The applied trial and error method optimizes the Sierpinski 
carpet area to fulfill the linearized size distribution by changing D2.    
 

TWO-DIMENSIONAL FRACTAL LINEARIZATION OF SIZE  
DISTRIBUTION CURVES 

 
The size distribution curve of an Bulgarian anthracite coal (Kuzev et al., 1994, 

Table 5, p. 88) was plotted in Fig. 4a, and next linearized using traditional 
mathematical equations (Fig. 4b), 3D-fractal (Fig. 4c), and also using 2D-fractal (Fig. 
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4d). For determination of 2D-fractal dimension D2 characterizing particle size 
distribution, the trial and error procedure proposed in this work was applied. Table 2 
shows results of the last trial.   

 
a) normal plot 

 

b) linearization using traditional Eqs 

 
c) 3D-fractal linearization 

 
 

d) 2D-fractal linearization 

 
Fig. 4. Size distribution of the considered Bulgarian anthracite coal (data after Kuzev et al., 1994,  

Table 5, p. 88) 
 

Figure 4d shows that single 2D-fractal dimension D2 equal to 1.916 can represent 

the whole size range because the last column in Table 3 having the form 
22 D−α

β  is 

approximately constant and equals 1. The results obtained basing on that fractal 
dimension show a linear character when plotting normalized size α=(dav/dav. max) versus 
normalized residual area of the Sierpinski carpet on a semi-log scale (Fig. 4d). The 
area index (At) was found to be 2410 of area units.   
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Table 2. Trial and error results (last trial) for determination of fractal dimension (D2) 
expressing size distribution of the investigated Bulgarian anthracite. D2 is considered 

final when the last column in the table (
22 D−α

β ) becomes constant 

D2=1.916 
dmax 
 

dmin 
 

dav. 
 α∗ 

(mi),% Ai=mi/α0.5D
2 

 
Ai, % 
 

Aci=ΣAi,% 
 

β=1−Αci 
 

β/α2-D
2 

 

3.00 2.00 2.50 1.000 0.5 0.50 2⋅10-04 0.0002466 1.00 0.9999 

2.00 0.40 1.20 0.480 37.0 74.74 4⋅10-02 0.0371095 0.96 1.0004 

0.40 0.10 0.25 0.100 31.0 281.42 1⋅10-01 0.1759061 0.82 0.9999 

0.10 
0.07
1 

0.08
6 0.034 5.5 139.56 7⋅10-02 0.2447369 0.76 1.0008 

0.07
1 0 

0.03
6 0.014 26.0 1531.37 8⋅10-01 1     

    100 2410.15     

∗ α =dav / dav max 
 
To check the ability of the 2D fractal to linearize a wide range of sizes, different 

literature size-distribution curves were considered. The results showed that frequently 
for wide-range size distributions a single 2D fractal is not sufficient. Usually there are 
two separate fractal dimensions for coarse and fine size fractions (Fig. 5).  

 

 
 

Fig. 5. Fractal linearization of a wide size-distribution range of coal (data after Ernst and Manfred, 1994, 
Table 1, p. 191). The coarse fractions have fractal dimension different from that representing 

the fine size fractions 
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CONCLUSIONS 
 

The following conclusions can be drawn from the paper: 
1. Fractal geometry can be used to express size distribution data in a linear form 

using either 2D or 3D fractals 
2. Gates-Gaudin-Schumann and the 3D fractal linearization are identical in 

mathematical forms 
3. 2D fractal linearization can be accomplished by finding an optimum background 

area (area on which the sample of particles is spread) by the trial and error method  
4. Frequently, wide size distributions need more than one 2D or 3D fractal 

dimensions to express the whole range  
5. There is no a universal procedure that can be followed for linearization of a given 

size distribution curve 
6. To compare different size distribution curves on linear bases, one has to check 

different approaches for linearization to find the one which provides straight lines 
for the whole considered size range. Otherwise the whole size range should be 
divided into fractally linearized sub-ranges 

7. 2D fractal linearization of size distribution curve is equivalent to two-adjustable 
parameter mathematical approach with D2 and Ai as adjustable parameters.  
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Krzywe rozkładu właściwości materiałów ziarnistych (rozmiaru, gęstości, hydrofobowości, itd.) są 
bardzo przydatne do charakteryzowania i kontroli wyników separacji. Często krzywe te, a zwłaszcza 
krzywe składu ziarnowego, są linearyzowane za pomocą różnych funkcji matematycznych takich jak 
Rosina-Rammlera, Gatesa-Gaudina-Schumanna, czy też Gaudina-Meloy’a. W tej pracy rozważano 
zastosowanie rachunku fraktalnego do linearyzacji krzywej składu ziarnowego. W pracy wykazano, że 
trójwymiarowa (3D) fraktalna linearyzacja składu ziarnowego jest identyczna z równaniem Gatesa-
Gaudina-Schumanna. Wykazano również, że dwuwymiarowy (2D) fraktal uwzględniający powierzchnię 
ziaren  może być użyty do linearyzacji krzywej składu ziarnowego pod warunkiem odpowiedniego 
doboru powierzchni, na której umieszcza się rozpatrywana próbę ziaren. Pokazano także, że  w 
niektórych przypadkach do liniowego opisu krzywej składu ziarnowego niezbędne staje się użycie więcej 
niż jednego fraktala. Linearyzacja za pomocą dwuwymiarowego fraktala jest w istocie przybliżaniem 
składu ziarnowego za pomocą dwóch dopasowywanych parametrów, to jest wymiaru fraktalnego oraz 
powierzchni, na której umieszcza się próbkę.  

 
 


