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The problem of determining the theoretically justified method of considering the natural shape of 
mineral grains in the calculations of their motion velocity in liquid media, especially their falling 
under the influence of the external mass force, in particular the force of gravity, has not been 
successfully solved so far. The presented paper shows a possibility of increasing the accuracy of 
calculations of this velocity with the use of the well-known formulas, discussed in the paper 
introduction, by means of the appropriate introduction of two different grain shape coefficients into 
them. 
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INTRODUCTION – FALLING VELOCITY OF SPHERICAL GRAINS 

 
The motion velocity of mineral gains (v, m·s-1) in the liquid medium (liquid or gas) 

under the effect of the acting external mass force is the principal criterion of their 
behaviour in the course of flow processes which play an important role in the 
technology of mineral processing1. This velocity is the function of the force exerted 
upon a grain by the mass force (most often gravity force or/and centrifugal force), 
evoking the grain motion (Pm, kg·m·s-2) of surface forces (Pψ, kg·m·s-2), comprising the 
resistance against the grain moving through the medium, and also, in a significant 
degree, practically in the initial motion phase – initial velocity (vp, m·s-1), given to the 
grain in the moment of the motion start (Laščenko 1935; Budryk 1936; Barskij et al. 
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1974 and others). In the present considerations the following idealized conditions were 
assumed: a spherical grain of a certain size (d, m) equal to the sphere diameter and 
density (ρz, kg·m-3), it moves in the liquid (water) of density (ρc, kg·m-3) and dynamic 
viscosity rate (µc, kg·m-1·s-1), occupying the unlimited spatial area, by means of free 
motion, (without possible actions of other objects), caused by gravity force of 
acceleration value (g, m·s-2) which is constant in the entire area. The instant velocity of 
grain in relation to the medium (v, m·s-1) is studied which is the function of motion 
duration time (t, s) – v = v(t); the grain initial time is nought (vp = v(0) = 0, m·s-1)2. 
Such conditions justify the assumption of the fact that the vectors of all forces acting 
upon the grain lie upon the straight line fixed by the vector of mass force whose sense 
determines a positive direction and the resultant force (P), acting on the grain, is 
constituted by the sum 

 
 ψPPP m −=   (1) 

 
Force P is the product of grain mass (mz) – mz = Vz·ρz, Vz – grain volume, for sphere 

Vz = 1/6·π·d³ – and the values of acceleration of grain motion (dv/dt) – 

dt
dvV

dt
dvmP zzz ⋅⋅=⋅= ρ  and it has properties of inertial force. 

Mass force is the product of grain mass diminished by the value of uplift pressure 
and acceleration of mass force. In the field of gravity force it is  

 

 ( ) gdP csm ⋅−⋅
⋅

= ρρπ
6

3

  (2) 

 
Resistance force of the medium (Pψ) has a general form 

 

 22 dvP c ⋅⋅⋅Ψ= ρψ   (3) 
 
where Ψ – dimensionless resistance coefficient which is a complex function of many 
factors, especially Reynolds’ number characterizing the motion of liquid around the 
grain in the considered system expressed by the formula 
 

 
µ

ρ dvc ⋅⋅
=Re   (4) 

 
In general, it can be written that Pψ is a certain function 
 
 Re),,,( cvdfP ρψ =   (3.1) 

                                                
2 accordingly the measurements of the quoted sizes are neglected, assumed in the entire work, according 
to the SI system of units 
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Difficulties in precise determining the general function form of the resistance 
coefficient, and firstly, practical requirements, led to working out, starting from the 
XVIIth century (Newton), numerous approximate forms of formulas for calculating the 
resistance force. They can be applied in limited ranges of grain motion conditions, 
most often defined by means of values of Reynolds’ number, characteristic for their 
highlighted ranges. The advanced work upon the general description of the motion of 
grains in the described conditions was undertaken as late as in the first half of the XXth 
century (Laščenko 1935). 

Newton’s approximations are the oldest and most popular 
 

 crd vFP ρ⋅⋅⋅= 2

3
1  (5) 

 
where Fr – grain projective area – area of the perpendicular projection of the grain 
upon the plane perpendicular to the tangent to the grain motion track, fixed by its mass 
centre in the point of the grain instant position; for a sphere in its every position the 
projective area is equal to the area of the largest cross-section of the sphere: 

2

4
dFr ⋅=

π , thus 

 cd vdP
sphere

ρπ
⋅⋅⋅= 22

12
  (5.1) 

 
and by Stokes 
 
 dvPl ⋅⋅⋅⋅= µπ3 . (6) 

 
The values of resistance force, expressed by formulas (5) and (6), are 

characteristic, respectively, to the conditions – turbulent (Pd) and laminar (Pl)3 motions 
of the medium flowing around the grain. Actually, the resistance force contains always 
two “components” – a “dynamic” one - Pd - originating from the resistance of inertial 
liquid and dissipation of energy in turbulent swirls in the conditions and a “laminar” 
one - Pl - evoked by the friction resistance between liquid layers and the grain surface 
and liquid in the laminar flow. 

The dependence of the resistance force from the grain motion velocity against the 
medium makes the absolute value of this force increase from the moment of the 
motion start and the acquisition of increasing velocity v under the effect of force P, 
and after some time (t0) (Laščenko 1935 and others) its absolute value becomes so 
close to the value of mass force that their sum (1), causing the grain motion, aims at 
                                                
3 it is often assumed (often artificially) that the laminar motion is characterized by the value Re < ~1 and 
turbulent one by Re > ~1000 
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nought. Then the acceleration of grain motion disappears and it moves on with 
practically constant speed, called the boundary  velocity (v0 = v(t ≥ ~ t0) = ~ const). 
Mineral grains of the most popular sizes and densities, subjected to flow operations 
(flow classification, sedimentation, gravitational enrichment), usually in the water 
medium, reach as a rule the boundary velocity after very short times t0, which 
contributed to assuming the boundary velocity v0, practically constant for given 
conditions, to be the value characterizing their behaviour in the discussed processes. 

Substituting expression for Pψ corresponding to the present flow conditions (Pd, Pl, 
Pd + Pl or others) into formula (1) for the balance of forces acting upon the grain, and 

dividing this formula by two sides by the grain mass ( zzz Vm ρ⋅= ) whereas 
dt
dv

m
P

z
= , 

we obtain the expression for acceleration balance in which the left side describes the 
acceleration of grain motion – dv/dt. The latter equals nought for the state of boundary 
velocity and after matching to nought the right side of the acceleration balance we 
receive an equation in which velocity v is only unknown, now already substituted by 
boundary velocity v0. Solving this equation results in obtaining a formula to calculate 
the boundary velocity. 

Assuming Pψ according to (5.1) we receive an equation known as Newton-
Rittinger’s formula4 

 ( )
c

cz dgv
NR ρ

ρρ ⋅−
⋅⋅= 20   (7) 

 
which is useful when Reynolds’ number assumes large values (large grains, at 
medium densities, d ≥ ~ 2÷5 mm). 
Assuming Pψ according to (6) results in Stokes’ formula 
 

 ( )
µ
ρρ
⋅

⋅−⋅
=

18

2

0
dgv cz

S
  (8) 

 
to calculate the boundary velocities of fine and very fine grains (d ≤ ~ 0,2 mm). 
The formal boundary of application of formulas (7) and (8) is determined by the value 
 

 36Re 0 =
⋅⋅

=
µ

ρ dvc   (9) 

─ 
S

v0   when Re ≤ 36 
─ 

NR
v0  when Re ≥ 36 

                                                
4 Rittinger derived this formula to be used in designing the operations of coal gravitational enrichment, 
assuming determining the resistance force according to Newton. 
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but assuming the permissible relative error of measurement of value ∆ (for example, ∆ 
= 0.05) changes the applicability ranges approximately: 
─ for Stokes’ formula (8):  into 0 ≤ Re ≤ ~ 36·∆, (for example 0 ≤ Re ≤ 1,8), 
─ for Newton-Rittinger’s formula (7):into 36/∆ ≤ Re, (for example 720 ≤ Re). 

A “universal” assumption of resistance force as a sum of Pd + Pl leads to obtaining 
a formula, given for the first time by Budryk (1936), applicable in a wide range of 
values of Reynolds’ number, characterizing the state of grain round flow 
 

 ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅

⋅
⋅−⋅

+⋅
⋅
⋅

= 1
162

118 3
20 dg

d
v ccs

c
B µ

ρρρ
ρ
µ   (10) 

 
The quoted formulas (7), (8) and (10) are, due to their simplicity, relatively often 

applied in cases which are unquestionable as far as a strong predominance of 
phenomena characteristic for turbulent round flow – Newton-Rittinger’s formula (e.g. 
gravitational enrichment of large and medium grains) or laminar one – Stokes’ 
formula (e.g. sedimentation processes). The most difficult concerns flow classification 
which concerns in majority of case the materials of grain size distribution 0.1 ÷ 1 mm 
or a little more, of the round flow characteristics through the classification medium 
about the boundary value Re = 36. Budryk’s formula (10), well-fitted for such grains, 
makes problems resulting from the lack of possibilities of presenting it in the form v0 
= S·dn where S – constant depending on grain and medium properties, invariable in a 
given process, n – power exponent at d, characteristic for the given formula (in 
Newton-Rittinger’s formula n = ½, in Stokes’ formula n = 2). For the so-called 
transition range, comprising such grains, many formulas were worked out, including 
many empirical ones, out of which the most useful is that given by Allen (Barskij et 
al.; Nowak, Sztaba 1986; Zbiorowe 1972 and others). 

Assuming in the formerly described approach leading to deriving formulas for v0, 

ld PPP ⋅=ψ  as the value of resistance, Allen’s formula is obtained in the form: 
 

 ( ) dgv
c

cz
A

⋅
⋅
−

⋅= 3
2

3
2

0 9 µρ
ρρ   (11) 

 
As opposed to Budryk’s formula of a practically unlimited range of applications, 

Allen’s formula can be used without a too large error, only for falling conditions in the 
transition range, called also Allen’s range, between the ranges of applicability of 
Stokes’ and Newton-Rittinger’s formulas. A conclusion may be drawn that it is more 
relevant to assume Pψ in the form of a sum, as in Budryk’s formula, than as a 
geometric mean of Pd and Pl resistances, as in the case of Allen’s formula. 

Among the already mentioned works aiming at working out a uniform way of 
calculating the boundary velocity, a record generalizing the majority of quoted 
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formulas is worth mentioning. After solving the general equation (3.1) by means of 
the dimension analysis and after introducing the resistance coefficient in the form 

2Re −⋅=Ψ nK  where: 
K – numerical constant 
n – coefficient indicating the character of the round flow 

n = 1   – laminar round flow:  K = 3·π, 
1 < n < 2  – round flow of mixed character (transition range):  K = π/2, 
n = 2   – turbulent round flow:   K = π/12, 

in the formerly given way the equation is obtained (Zbiorowe 1972) 
 

 nn
n
c

czn d
K
gv −−

− ⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅⋅= 32

10 3
4 µ

ρ
ρρ   (12) 

 
as a general formula for the free falling velocity for any flow conditions. Changing 
value n in the given limits, the formulas for various types of grain motions are 
obtained, consistent with those given before. 
 

SELECTED DETERMINATIONS OF GRAIN SHAPES APPLIED  
FOR FLOW PROCESSES 

 
The discussed formulas, important for spherical grains, not occurring in mineral 

processing, cannot be directly applied in the industry. The problem of considering the 
shape of grains for calculating the boundary velocity of falling concerned the attention 
of researchers and engineers for a long time. The collected works and outlooks can be 
systematically arranged as follows (Zbiorowe 1972 and others). 
1. Empirical methods consisting in experimental determining for respective materials 

(usually minerals) numerical coefficients introduced into the formulas important 
for spherical grains. These are the oldest methods and are only valuable for the 
materials tested experimentally, cannot be broadened or generalized, do not use 
the values directly concerning the shape of grains. 

2. Other experimental methods, using coefficients fixed for solids of shapes defined 
by means of geometric descriptions. In this group special attention should be put 
upon empirical corrections introduced into formulas for spherical grains and fixed 
not for the grains of directly defined shapes but of different values of the spherity 
coefficient (Ck), discussed further in point 3.b. There are also other coefficients 
(Zbiorowe 1972), determined for solids of regular shapes, falling at the values of 
Reynolds’ number, characterizing the round flow of the grain by the liquid – 
classification medium – in ranges 0 ÷ 0.05 (correction to Stokes’ formula) and 
over 2000 (correction to Newton-Rittinger’s equation). There is no information to 
prove these empirical dependences for regular grains and no concept to broaden 
the method into the transition area ~ 0,05 < Re< ~ 2000. 



Influence of grain size upon its falling velocity 
 

 

213

3. Calculation methods based upon introducing the values taking into consideration 
the non-spherity of real grains into formulas for spherical grains. Real grains can 
be possibly divided into certain groups (Barskij et al. 1974). Out of these the 
following methods can be differentiated. 
3.a. Assuming as the grain size the substitute grain diameter (dz) – a sphere 

diameter of the volume equal to that of the grain  
 

 33 2407.16
z

z
z VVd ⋅≈

⋅
=

π
  (13) 

 
For practical purposes dz is usually fixed as an average value Dz, e.g. for a certain 
grain class, deducting at random a certain number (N – usually not less than a few 
hundred) of grains and determining their mass mN. Knowing the material density 
ρs, it can be calculated: 

 

 33 2407.16
)(

s

N

s

N
z N

m
N
mD

N ρρπ ⋅
⋅≈

⋅⋅
⋅

=   (13.1) 

 
The application of a substitute diameter has been more and more generally used 
for a long time in any calculations of flow processes. This principle can be also 
applied in this paper. 
3.b. Introducing the coefficients into formulas, which are directly connected with 

grain geometry (without empirical corrections, as in point 2). The most 
important ones are given below: 

─ spherity coefficient (Ck)5 – relation of sphere surface (Fk) of the volume equal 
to the grain (sphere of dz diameter) to the grain surface (Fz) 

 

 2

2

2

2

k

z

k

z

z

k
k d

d
d
d

F
FC =

⋅
⋅

==
π
π   (14) 

 
where: dk – diameter of the sphere of the surface equal to the grain (Fz), 
─ circularity coefficient5 (Cc) – relation of the length of outline (cz) of the per-

pendicular projection of the grain on the plane on which it is placed in the po-
sition in which the centre of the grain mass is situated at the closest of this 
plane (“the most stable position”) to the length of the circle perimeter (ck) of 
the area equal to the area of grain projection (Fp) 

 
p

z

k

z
c F

c
c
cC

⋅⋅
==

π2
  (15) 

                                                
5 Proposed by Wadell in 1934. 
 



K. Sztaba 

 

214 

the diameter of a circle of the area Fp is the grain projection value (dp) 
 

 p
p

p F
F

d ⋅≈⋅= 1284.12
π

  (16) 

 
─ grain shape coefficient, given by Nowak (1980) 

 

 
p

z

p

z

p

z
AN F

V
F

V
d
dC

3/23/2
3

2

2

2090.1
16

9
⋅≈⋅

⋅
==

π   (17) 

 
3.c. Introducing a coefficient similar to those described in point 3.b. but indirectly 

considering the change of conditions of the grain round flow depending on its 
shape in the form of “dynamic shape coefficients” (Barskij et al. 1974). This 
paper does not present examples of such propositions. 

Only certain shape coefficients, discussed in point 3.b., are used in the paper. In 
this domain several significant propositions and elaborations were noted in Poland in 
the second half of the previous century. Apart from the quoted work by Nowak (1980) 
there are important investigations by Sysło (1964) on considering the grain shape in 
calculating the velocity of grains falling for which Stokes’ formula can be applied. 
Another reason why these works are important is that their final result in the form of 
corrections to formulas was obtained in both cases by means of heuristic 
considerations, obtaining then very good results of experimental verification. 
 

FALLING VELOCITY OF NON-SPHERICAL FINE GRAINS 
 

In simplification, it can be stated that the resistance of medium exerted on very fine 
grains, falling at their purely laminar round flow through the medium, originates as the 
resistance of friction on the entire surface of grains. Consequently, it should be 
assumed the value dk, determined by the grain surface, which can be appropriately 
assumed to be a representative grain size. Its value can be determined but it is hard to 
reach. It is, however, connected with the value of substitute diameter dz, value of 
spherity coefficient Ck, assumed for calculations. It results from formula (14): 
 

 
k

z
k C

dd =   (18) 

 
Taking into account this dependence, the force of laminar resistance is written as 
 

 
k

z
l C

dvP ⋅⋅⋅⋅=′ µπ3   (6.1) 
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Here and in the subsequent sequence of values, in which the grain shapes were 
taken into account, they are marked with the ′ sign. 

Acting in the same way as in deriving Stokes’ formula, we obtain the expression, 
which takes into account the shape of grains: 
 

 
( )

µ
ρρ

⋅
⋅−⋅⋅

=′
18

2

0
zczk dCg

v
S

  (8.1) 

 
FALLING VELOCITY OF NON-SPHERICAL LARGE GRAINS 

 
Performing an analogical consideration as in chapter 3. for large grains which are 

subject mainly to the force of dynamic resistance, it should be observed that the 
character of this resistance is different from laminar. Especially its value depends 
upon the front surface area of the grain projective surface Fr – determined in formula 
(5). This value cannot be measured in relation to the grain falling in the liquid. As 
assistance we can use a certain phenomenon occurring during the falling of grains on 
which the dynamic resistance acts significantly. This is a so-called principle of 
maximum projection, mentioned in some works concerning the motion of solids in 
liquid media. This phenomenon was analysed in detail also by Sysło (1964). 

Descriptively, it consists in the fact that the equilibrium of forces of resistance 
acting upon the grain leads to setting such spatial position of the falling grain that its 
projection surface is the largest among all the projections of this grain. Due to that it 
can be assumed that the projection value dp (16) is a proper denotation of the grain 
size. It results from the definition of the shape coefficient CAN (17) that it is connected 
with a disposable, assumed to be basic, substitute value by the expression 

 

 
AN

z
p C

dd =   (19) 

 
Acting as in deriving the modified Stokes, formula and substituting (19) into (5.1) 

we obtain its modified form 
 

 cz
AN

d vd
C

P ρπ
⋅⋅⋅

⋅
=′ 22

12
  (5.2) 

 
which, applied to derive Newton-Rittinger’s formula, leads to its form: 
 

 ( )
c

zcz
AN

dCgv
NR ρ

ρρ ⋅−
⋅⋅⋅=′ 20   (7.1) 
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GENERALIZED FORMULA FOR FALLING VELOCITY  
OF NON-SPHERICAL GRAINS 

 
The transformed formulas (7.1) and (8.1) do not solve the problem of considering 

the grain shape in calculating the boundary falling velocity in a complete way. They 
do not cover the intermediate range, which is the most important for the needs of flow 
classification and in which the round flow of grains by the medium occurs at the 
values of Reynolds’ number in the range (0.05) 0.1 ÷ 1000 (2000)6. 

Allen’s formula (11), which is applied in this case, complicates greatly a possible 
repetition of the applied procedure to obtain the formula analogical to (7.1) and (8.1). 
In this situation this procedure was applied to derive a formula corresponding to 
Budryk’s equation (10). After accepting formulas (5.) and (6.1) to be both components 
of resistance force and initial assumptions as in Budryk’s formula, we achieve its form 

 

 ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⋅

⋅−
⋅⋅⋅⋅

⋅
⋅

=′ 11
162

18 3
20 z

ccs

AN

k

k

AN

zc
d

C
Cg

C
C

d
v

B µ
ρρρ

ρ
µ   (10.1) 

 
In the works (Nowak, Sztaba 1986, Sztaba 1992) detailed remarks were given 

about the results of experiments performed to verify the usefulness of formula (10.1) 
To do this, the range of values of Reynolds’ number 1 ÷ 1000 was selected. Quartzite 
of density 2640 kg·m–3 and grain size distribution 0.06÷5 mm was the tested material, 
scattered carefully into 20 narrow grain classes. 

Average values of the following items were set for each class in precisely 
determined and controlled conditions: 
─ Dz – substitute value dz, 
─ Dp – projection value dp, 
─ zF  – surface of grains Fz 
─ rv  – real boundary velocity, marked here as vr to be clearly distinguished, of 

falling in water at strictly controlled temperature and determining with the 
corresponding values ρc and µ from the tables. 

On the basis of these data for each class the average values were calculated: 
─ kC    – spherity Ck, 
─ ANC  – coefficient CAN 
─ 

B
v0  – value of boundary falling velocity (for grains of size Dz) according to Bud-
ryk’s formula for spherical grains (10), 

─ 
Brv  – values of boundary falling velocities (for ANkz CCD ,, ) according to formula 

(10.1), 
                                                
6 according to various authors and also the required calculation accuracy (numbers in brackets concern 
higher accuracy) 
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and also, respectively for 
B

v0  and 
Brv , average values of Reynolds’ number, not 

analysed in the present paper. 
Figure 1 (Nowak, Sztaba 1976; Sztaba 1992) presents the results of performed 

investigations. 
The figure shows the course of dependence between the mentioned values and 

values Dz. The use of logarithmic scale results from a large differentiation of grouping 
of measurement points for fine grains in relation to coarse ones. There is a clear 
improvement of consistency of calculation results of value 

Brv  according to formula 

(10.1) as compared to 
B

v0 , formula (10),  without considering the grain shapes, with 

the real values of velocity rv . The presented graphs allow us only to formulate 
quantitative (descriptive) conclusions. To make them precise, the coefficients of linear 
regression (ρk) were calculated of the form: 

 
 bXaY +⋅=   (20) 
 
obtaining  
─ for Y = 

B
v0 , X = rv : a = 0.60555; b = -0.00178; ρk = 0.99638, 

─ for Y = 
Brv , X = rv : a = 0.84961; b = 0.00234; ρk = 0.99944. 

Supposing that in case of an ideal compatibility X and Y the presented values would 
be: a = 1, b = 0 (ρk = 1), we can speak about a significant improvement of accuracy of 
calculations (estimated mostly on the basis of the value of the coefficient a) when we 
take into account the shape coefficients as compared to the results obtained without 
taking them into consideration. In another, parallel, series of experiments, the 
following results were obtained, respectively: 
─ for 0v  (

B
v0 ): a = 0.53025; b = 0.00175, 

─ for rv  (
Brv ): a = 0.82095; b = 0.00185 

and other similar ones. 
Fig. 1 presents also the courses of dependences of coefficients of shape (linear 

scale) on grain sizes, which reveal certain regularities indicating the need of further 
research on the methods of determining their values. 

Coefficient Ck, decreasing very regularly with the growth of grains up to very small 
values (below 0.05), indicates that with the growth of grain sizes there are significant, 
undoubtedly overestimated, results of the measurements of specific surface resulting 
from the fact that the developed elements of the surface were included in it. In spite of 
applying the flow methods for the measurements of specific surface (in Tovaroff’s 
apparatus) little sizes of the surface relief elements (in relation to the sizes of large 
grains) cause significant overestimations of measurement results and, respectively, the 
decrease of the value of Ck. On the other hand, a regular course of the discussed 
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dependence is a proof of high accuracy of measurements as such, regardless the 
discussed limited adequacy of the real measured value to the assumed one. 

Respectively, the course of the dependence CAN on Dz reveals the presence of an 
interesting minimum but, at the same time, a large scatter of points confirms the 
necessity of significant improvement of the measurement accuracy to be obtained, 
including the projective diameter Dp.  
 

 
Fig. 1. The calculated and real boundary velocities of quartzite grains falling freely in water (explanations 

in the text; R ≡ Re), according to (Nowak, Sztaba 1986; Sztaba 1992) 
 

In spite of this, the course of the discussed dependence is so much univocal that the 
final results, already discussed, can be treated in a half-quantitative way. It should be 
noted that the attempts of improvement of the results of calculations of boundary 
velocities, with taking into account the coefficients of shape and with the same 
experimental data, gave worse results or results showing a large scatter than the 
presented ones. 
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CONCLUSIONS 
 
1. The investigations confirmed the correctness of the concept of applying several 

coefficients of shape in the calculations of boundary velocities of non-spherical 
grains. It seems to be inevitable, especially for the intermediate range ( ~1 < Re< 
~1000). 

2. When the initial assumptions were simplified and formalized, the improvement of 
the results of calculations of 0v , experimentally confirmed, was obtained. This 
fact confirms the correctness of the assumed research, though obtaining a possibly 
total consistence of calculation results and experimental results need further 
investigations, which are being continued. 

3. The methods of measurements determining the values of the coefficients of shape 
of grains should be perfected (average values of these coefficients in grain sets). 

4. It was not planned to provide a general presentation of calculating the boundary 
velocity which is a special case of grain characteristic velocity (vc = vc(t); v0 = 
vc(∞)) in relation to the medium and which is not discussed. The aim of this paper 
was to present the title possibility of improving the results of calculating the 
boundary velocity. The author assumed the oldest and most popular methods of 
calculating this velocity by means of formulas based on the formally considered 
balance of basic forces acting upon the grain in the liquid medium to constitute the 
presentation object. The development of the method as well as its applications for 
the method of calculating the grain velocity in the medium, based upon the most 
contemporary knowledge about the principles of flow processes are the subject-
matter of further investigations. 

 
REFERENCES 

 
BARSKIJ, M.D., REVNIVCEV, V.I., SOKOLKIN, J.V., 1974 – Gravitacionnaja klassifikacija zernistych 

materialov (Gravitational Classification of Grained Materials), „Nedra” Moskva (in Russian) 
BUDRYK, W. 1936 – Contribution à la théorie du lavage, (Contribution to the Theory of Jigging) – 

Revue de l′Industrie Minérale, No 374 (in French) 
LAŠČENKO, P.V., 1935 – Gravitacionnye metody obogaščenija (Gravitational Methods of Enrichment) 

– ONTI - SSSR, Moskva – Leningrad (in Russian) 
NOWAK, A. 1980 – Kornformfaktor für die Bewegung in einem flüssigen Medium, (Coefficient of Shape 

at the Movement of Grains in a Liquid Medium), Freiberger Forschungshefte A 633, Deutscher 
Verlag für Grundstoffindustrie, Leipzig (in German) 

NOWAK, A., SZTABA, K. 1981 – Koncepcja uogólnionego ujęcia współczynników kształtu ziarn w 
określeniu prędkości granicznej opadania (Concept of Generalized Idea of Grains Shape in 
Determing the Boundary Falling Velocity) - Materiały: Seminarium naukowo-techniczne 
„Klasyfikacja materiałów drobnouziarnionych”, NOT–AGH, Kraków, komunikat (in Polish) 

NOWAK, A., SZTABA, K. 1986 - The Influence of Particle Shape on the Falling Velocity in the Allen′s Range 
- Proceedings: 1. World Congress Particle Technology, Part I: Particle Characterisation, Nürnberg 
(Germany) 

SYSŁO, M. 1964 – Uogólnione prawo Stokesa dla brył spójnych, (Generalized Stokes′ Law for Compact 
Solid Bodies), Zeszyty Naukowe AGH, Rozprawy vol. 33, Kraków (in Polish) 



K. Sztaba 

 

220 

SZTABA, K. 1992 – Problems of Taking into Account Shapes of Mineral Grains in Flow Classification – 
Proceedings: The First International Conference on Modern Process Mineralogy & Mineral 
Processing, Beijing (China) 

ZBIOROWE 1972 – Spravočnik po obogaščeniju rud t.1. (Handbook of Ore Processing vol.1.) – „Nedra” 
Moskva (in Russian) 

 
 
Sztaba K., Wpływ kształtu ziarna na prędkość jego opadania, Physicochemical Problems of Mineral 
Processing, 38, (2004) 207-220 (w jęz. ang.). 
 

Problem określenia teoretycznie uzasadnionej metody uwzględniania naturalnego kształtu ziarn 
mineralnych w obliczeniach prędkości ich ruchu w ośrodkach płynnych – zwłaszcza ich opadania pod 
wpływem zewnętrznej siły masowej, w szczególności siły ciężkości – nie znalazł dotychczas w pełni 
zadowalającego rozwiązania ogólnego. Prezentowane opracowanie przedstawia możliwość zwiększenia 
dokładności obliczeń tej prędkości z zastosowaniem znanych wzorów – omówionych we wstępie 
opracowania – drogą odpowiedniego wprowadzenia do nich dwóch różnych współczynników kształtu 
ziarna. 

 


