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Abstract: The paper deals with Statistical Process Control (SPC) applied to three original and three 
generated variables of copper ore upgrading by flotation. The six variables were evaluated by the SPC 
charts based on industrial upgrading of copper ore data gathered during one month of operation in the 
form of copper content in feed, concentrate and tailing. The remaining three upgrading variables were 
concentrate yield, copper recovery in concentrate and non-copper components recovery in tailing. 
Although, all variables obeyed normal distribution, considerable autocorrelation was detected between 
observations for all variables.  For this reason, the traditional Shewhart control charts, that assume the 
process data generated are normally and independently distributed, resulted in many of out-of-control 
points which may lead to wrong decisions regarding the control of process variables. The most suitable 
ARIMA time series models were determined for all variables to remove autocorrelations. The 
ARIMA(0,1,1) model was found the best for copper content in feed, copper content in concentrate, 
concentrate yield and non-copper components recovery in tailing, while the AR(1) model was suitable for 
copper content in tailing and copper recovery in concentrate.  

keywords: copper, upgrading, statistical process control, ARIMA model, Shewhart’s chart, 
autocorrelation 

Introduction 

Each separation process provides a set of results, which can be used for evaluation, 
analysis and optimization of the process. The obtained data from industrial processing 
of raw materials are always scattered. It is due to fluctuation of operational variables 
and variation of feed composition (Mukherjee and Chandra, 2002; Drzymala et al., 
2010). Moreover, most separation processes are specific and typical statistical 
methods applied for analysis and evaluation of separation results are very often not 



 A. Tasdemir, P.B. Kowalczuk 250

applicable (Drzymala and Kowalczuk, 2010). It causes a need for appropriate 
processing of separation results data. 

The processing of an ore in beneficiation plants is mainly controlled by the grade 
of feed, concentrate and tailing. These data, and some new parameters of the ore 
upgrading such as recovery and yield can be calculated and used for evaluation of the 
overall plant performance (Wills and Napier-Munn, 2006; Drzymala, 2007). 
Therefore, the process data must be gathered and analysed to determine control limits 
of variables and to monitor them. During industrial processing two types of variability 
occur. The first one is the common cause variability that occurs with the nature of any 
process and cannot be avoided. The second one is a special cause variability, which is 
not a part of process characteristics and exists almost in all processes. The special 
cause variability can be identified and eliminated by the Statistical Process Control 
(SPC) charts. The SPC chart is a guide during decision making on the process and 
taking the corrective actions. If there is no special cause in the process, the SPC 
methods are also used to check its working conditions at a predetermined level (Smeti 
et al., 2006; Psarakis and Papaleonida, 2007).   

The control charts represent a very important tool in statistical quality control used 
to monitor a process and detect shifts in values of its variables. Traditional control 
charts are based on the assumption that process outputs obtained at each time period 
are normally distributed and independent (Alwan and Roberts, 1988; Zhang, 1997; 
Castagliola and Tsung, 2005). Many research studies showed that violation of these 
assumptions resulted in many false alarms which caused wrong decisions about the 
process (Alwan and Roberts, 1988; Stoumbos and Reynolds, 2000; Bisgard and 
Kulahci, 2005). Therefore, both normality and independence assumptions should be 
satisfied since most industrial data are usually non-normal and auto-correlated. 

The dynamics of any process induces correlated variables, which are closely 
spaced in time. Therefore, in the process outputs some correlations, called 
autocorrelation, can occur. The autocorrelation may have serious effects on the 
properties of standard control charts developed under independence assumption (Singh 
and Prajapati, 2011). Hence, the process mean is not constant if there is 
autocorrelation between variables (Thaga, 2008).  

It is well known that the autocorrelation may significantly degrade the in-control 
performance of the control charts due to frequent false alarms (Testik, 2005). The 
effect of autocorrelation on the performance of the Statistical Process Control (SPC) 
charts were reported by many authors (Alwan and Roberts, 1988; Montgomery and 
Mastrangelo, 1991; Reynolds and Lu, 1997; Zhang, 1997; Lu and Reynolds, 1999; 
2001; Bisgaard and Kulahci, 2005; Testik, 2005; Singh and Prajapati, 2011). 
However, the data generated are assumed independent (not autocorrelated), and 
normally distributed in many SPC applications of mineral and/or mining industry and 
assumptions for the monitoring and process control aims. On the other hand, 
satisfaction of normality and dependence assumptions of the SPC is necessary to avoid 
wrong decisions due to false alarms on the charts (Bhattacherjee and Samanta, 2002). 
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A significant effect of autocorrelation on the SPC charts was considered in mineral 
and mining applications by a limited number of studies (Samanta and Bhattacherjee, 
2001; Bhattacherjee and Samanta, 2002; Samanta, 2002; Elevli et al., 2009; Tasdemir, 
2012a; 2013).  

In the case of autocorrelation, it is necessary to make some modifications for 
traditional control charts. Fitting a time series model to the traditional control charts, 
which display the original observations was suggested by Alwan and Roberts (1988), 
Reynolds and Lu (1997), Lu and Reynolds (1999, 2001). A suitable time series model 
for the investigated quality parameter of the process is required to apply this method 
(Apley and Lee, 2003). The individual control chart applied to the residuals is called 
the Special Control Chart (SCC), which is also known as the X residual or the 
Shewhart chart. The first residual control chart was developed by Alwan and Roberts 
(1988). In residual charts, an appropriate time series model is fitted to autocorrelated 
observations and residuals are plotted on the SCC (Demirkol, 2008). More detailed 
information can be found in Psarakis and Papaleonida (2007) and the references 
therein. 

As in the many industrial plants, large amounts of data are obtained over time at 
mineral processing plants. The analyses of these resulting data by a suitable method 
are very important steps to understand the plant performance (Ketata and Rockwell, 
2008). Application of times series to many data sets from mineral processing plants 
was shown to be a suitable method (Napier-Munn and Meyer, 1999; Meyer and 
Napier-Munn, 1999; Ganguli and Tingling, 2001) since the data structure is identical 
to the time series form. Many ore quality characteristic values in mineral processing 
are good examples of the time series that is correlated in time domain (Ganguli and 
Tingling, 2001; Elevli et al., 2009; Tasdemir, 2012a, b, 2013). Therefore, usage of the 
ARIMA time series for removing the autocorrelation to detect correct ore quality 
limits by the SPC is advantageous, since we can also use this time series model for 
near future estimation of ore quality characteristics. Two examples were reported for 
the short-term prediction of recovery and ore quality variables at a chromite 
preparation plant by using the AR(1) time series model (Tasdemir, 2012b, 2013). 

In this work we investigate the individual control charts based on the original 
observations of residuals obtained by the time series of ARIMA models to monitor 
three original and three generated upgrading variables of the Fore-Sudetic Monocline 
copper ores by a flotation process, that are copper content in the feed, concentrate and 
tailing, and three generated upgrading parameters, that are concentrate yield, Cu 
recovery in concentrate and non-Cu components recovery in tailing. The ARIMA 
models were developed for the copper ore parameters to characterize the 
autocorrelation between observations. Finally, we compare the performance of the 
standard Shewhart chart, which ignores subgroup correlations with the X- individual 
control charts of ARIMA residuals.  
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Methods 

The data sets were obtained from the Fore-Sudetic Monocline copper ore flotation 
process gathered during one-month production (Drzymala and Kowalczuk, 2010) in 
the form of copper content in feed α, concentrate β and tailing ϑ, and three generated 
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 (Drzymala, 2007), to monitor the changes in the 

industrial processing plant. The plant works three shifts in a day, therefore 93 records 
were used to investigate the effect of autocorrelation on the performance of the 
Shewhart individual control charts based on the original observations or the residual 
charts from the ARIMA models. 

The SPC chart is used to present sample quality for one parameter measured in 
control samples. If the data occur outside the limits, the process is out-of-control and 
has to be stopped and inspected of causes, when the out-of-control points are detected. 
More detailed information on this topic can be found in Montgomery and Runger 
(2011) and Tasdemir (2012a,b).  

The parameters of time series models were estimated from the ARIMA models 
using Minitab 16 and Statgraphics Centrion XVI softwares. The softwares were also 
used for constructing and evaluation the SPC charts and for statistical analysis of 
residuals from the ARIMA models. More details on the ARIMA estimation 
methodology and model selection can be found in the work of Montgomery et al. 
(2008) and two examples for coal washing data were applied by Tasdemir (2012a). In 
this study, the Akaike Information Criterion (AIC) was considered during the selection 
of a suitable ARIMA model for the Cu upgrading variables. Finally, the Shewhart 
charts of individual observations were compared with the Shewhart charts of residuals 
to investigate the autocorrelation effect on the performance of the SPC charts.  

Results and discussion 

Normality and autocorrelation of upgrading parameters 
The process control charts can be applied, when the normality assumption is satisfied. 
Without a normal distribution, correct limits of control charts may fail. Montgomery 
and Runger (2011) studied behaviour of the Shewhart control chart for non-normal 
process data. According to Montgomery and Runger (2011), even if the process shows 
evidence of moderate departure from normality, the given control limits may be 
entirely inappropriate. In situations involving a large number of measurements, it may 
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be possible to subgroup the data and construct the mean chart ( )X  instead of the X 
individual chart. However, the measurements should not be subgrouped arbitrarily for 
this purpose (Srinivasan, 2011). If subgrouping is not possible, two alternatives of the 
normality of data occur. One approach attempts to transform data. A number of 
mathematical transformations were developed over the years. The data transformation 
means performing the same mathematical operation on each piece of original data, 
preferably with a transformation method like the Box-Cox or the Johnson (Chou et al., 
1998). Another approach is to modify the usual limits based on a suitable model for 
the data distribution (Castagliola and Tsung, 2005). Identifying a mathematical 
distribution can help to develop alternate control limits. Thus, it can be identified if the 
data belong to a particular class of distribution.  

The normal probability graphs of six copper upgrading variables are plotted with 
95% confidence interval (Fig. 1). The p values, which test normal distribution, for all 
variables were higher than 0.05. It means that all the considered process data have 
normal distribution. It indicates that normality, the first assumption needed for 
applying the traditional Shewhart control charts, was satisfied.  
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Fig. 1. Normal probability plots of considered copper upgrading variables 
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The statistical process control (SPC) can only be applied for a process, when the 
independence of data is also satisfied. If any correlation of data is detected, it has to be 
eliminated before use for the standard control charts. Data are autocorrelated when 
each value is correlated to the previous one. The autocorrelation (or time dependency) 
builds up automatically and occurs between observed data. It can be checked by 
scatter diagrams of each value (lag plot) against the previous one (Stapenhurst, 2005; 
Drzymala and Kowalczuk, 2010; NIST/SEMATECH, 2010). Figure 2 shows the 
scatter diagrams of six copper upgrading variables, where considerable positive 
correlations between two consecutive data values of all variables are observed. It 
means that there is no non-random pattern in the data. Since each individual 
observation is dependent upon the previous one, the degree of autocorrelation should 
be determined and removed before constructing the SPC charts. It can be done by 
using the ARIMA time series models. 
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Fig. 2. The lag plots of copper upgrading variables 
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Fig. 3. Time series, ACF and PACF plots of copper upgrading variables 
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The assumptions of independence and stationary were also checked for six 
upgrading variables using the autocorrelation (ACF) and partial autocorrelation 
(PACF) functions. Figure 3 shows the time series plots of six data sets together with 
their ACF and PACF plots. The ACF plots show the correlation between Xt and Xt-k, 
where Xt is the response variable at time t, and k lag between two measurements. The 
PACF plots show the partial autocorrelation function for a given lag k, where the 
partial autocorrelation at lag k is the autocorrelation between Xt and Xt–k , that is not 
accounted for lags 1 through k – 1 (NIST/SEMATECH, 2010). These plots are 
generated for 25 lags. The ACF and PACF plots (Fig. 3) clearly confirm the existence 
of autocorrelation between values of all upgrading variables. It can be seen that the 
data are highly autocorrelated with the lag one autocorrelation of 0.472 for Cu content 
in tailing (ϑ) and 0.462 for Cu recovery in concentrate (ε). According to the 
autocorrelation plots of these variables, the ACF of the time series values cuts off 
quickly after few lags, then they can be considered stationary. The autoregressive 
models are indicated by exponential decay to zero of the ACF plot and order of the 
autoregressive model is determined by the initial peaks in the PACF plots. The ACF 
and PACF plots for ϑ  and ε indicate the autoregressive model with lag 1, since they 
have one important spike at first lag in their PACF plots. For these reasons, the AR(1) 
model was suitable for fitting the data of copper content in tailing ϑ and copper 
recovery in concentrate ε.  

The autocorrelation of copper content in feed α and concentrate β, concentrate 
yield γ and non-copper components recovery in tailing εo can be also described by the 
ARIMA time series model. The autocorrelation values at first lag were determined as 
0.361, 0.279, 0.402 and 0.399 for the copper content in feed (α), concentrate grade (β), 
yield of product (γ) and non-copper components content in tailing (εo), respectively 
(Fig. 3). The slow decay of autocorrelation coefficients for these variables in the ACF 
plots implies that they are not stationary. The stationary characters were achieved by 
applying first order differencing. After that, all upgrading variables showed one 
significant spike at the first lag of the ACF plots suggesting the first order of the 
moving average model MA(1). Finally, the ARIMA (0,1,1) model was found to be the 
most suitable for these variables. In the ARIMA (0,1,1) model the autogresessive 
parameter is zero, number of differencing passes is one and moving average parameter 
is one. 

ARIMA models and residual analysis 
The ARIMA time series models were used to remove autocorrelations. The models 
were fitted by using the Statgraphics software, which optimizes the model parameters 
according to the selection criteria of the model. The models with the lowest values of 
the Akaike Information Criterion (AIC) were selected as the best describing model of 
the variables. More detailed information about the AIC can be found in Tasdemir 
(2012a).  
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It was mentioned before that among different ARIMA models, the ARIMA(0,1,1) 
was found the best one for α, β, γ and εo, while the first order autoregressive time 
series model AR(1) was the most suitable for ϑ and ε. The AR(1) model was used by 
many authors for daily metal recovery or concentrate grade at a zinc flotation plant, 
daily gold feed grade and gold recovery data (Napier-Munn and Meyer, 1999; Meyer 
and Napier-Munn, 1999), B2O3% contents in two colemanite concentrator plants 
(Elevli et al., 2009), Al2O3% and SiO2% constituents of a bauxite ore (Bhattacherjee 
and Samanta, 2002), forecasting chromite feed grade and product quality parameters 
(Tasdemir, 2013), and prediction of Cr2O3 recovery in a chromite preparation plant 
(Tasdemir, 2012b). Except the AR(1), other time series models were reported for 
mineral processing data such as the ARMA models for flotation (Trybalski and 
Cieply, 2000), SO2 emissions (Gleit, 1985) and coal preparation (Tasdemir, 2012a). 

Validation of the models obtained for the Cu upgrading variables was checked for 
the adequacy. The model is adequate if residuals are uncorrelated and normally 
distributed. The evaluation results of the ARIMA models as the so-called 4-plot of 
data and residual ACF plots for β as an example are presented in Fig. 4. It clearly 
indicates that the residuals are uncorrelated within (or very close to) 95% confidence 
limits and distributed randomly. The residuals of other parameters are also found 
uncorrelated and normally distributed. Therefore, they can be considered as a white 
noise allowing to work on the traditional SPC charts.  
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Fig. 4. Residual plots from ARIMA model and ACF chart for Cu content in concentrate β 

The calculated parameters of the AR(1) and ARIMA(0,1,1) models for Cu 
upgrading variables are given in Tables 1 and 2, respectively. It can be seen that the p-
values of all model parameters are less than 0.05, so they are significantly different 
from zero at the 95.0% confidence level. We obtained the following AR(1) models for 
copper content in tailing ϑ and copper recovery in concentrate ε: 

 Xt = 0.472 Xt–1 + 0.117    with the AIC of –7.278 (for ϑ), 

 Xt = 0.462 Xt–1 + 47.308    with the AIC of 0.894 (for ε). 
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and ARIMA(0,1,1) models (Eq. 8) for copper content in feed α and concentrate β, 
concentrate yield γ and non-copper compounds recovery in tailing εo: 

 Xt = Xt-1 + 0.759 a t–1    with the AIC of –4.977 (for α), 

 Xt = Xt-1 + 0.846 a t–1    with the AIC of –0.4804 (for β), 

 Xt = Xt-1 + 0.751 a t–1    with the AIC of –1.7362 (for γ), 

 Xt = Xt-1 + 0.754 a t–1    with the AIC of –2.0624 (for εo), 

where at is the independent error term (random shock term) at time t, which reflects 
the amount of variation in data. 

Table 1. Summary of AR(1) model parameters for copper content in tailing ϑ and Cu recovery  
in concentrate ε. WNV means white noise variance of random shock term (at) in the model 

Model descriptors and statistics 
Upgrading variable 

Parameter Estimate Standard error t-value p-value 
Cu content in tailing, ϑ , % AR(1) 0.471505 0.0908267 5.19126 0.000001 
 Mean 0.222053 0.0048676 45.6189 0.000000 
 WNV 0.000666    
Cu recovery in concentrate, ε, % AR(1) 0.461607 0.0911491 5.0643 0.000002 
 Mean 87.8695 0.287521 305.611 0.000000 
 WNV 2.36768    

Table 2. Summary of ARIMA(0,1,1) model parametersfor Cu content in feed α and concentrate β, 
concentrate yield γ, and non-copper components recovery in tailing εo. WNV means  

white noise variance of random shock term (at) in the model  

Model descriptors and statistics 
Upgrading variable 

Parameter Estimate Standard error t-value p-value 
Cu content in feed, α, % MA(1) 

WNV 
0.75944 
0.00682 

0.068817 11.0356 0.00000 
 

Cu content in concentrate, β, % MA(1) 
WNV 

0.84585 
0.62394 

0.061638 13.7229 0.00000 
 

Concentrate yield, γ, % MA(1) 
WNV 

0.75112 
0.17818 

0.067773 11.0828 0.00000 
 

Non-Cu recovery in tailing, ε0, % MA(1) 
WNV 

0.75425 
0.12881 

0.067943 11.1013 0.00000 
 

Individual control charts and ARIMA residuals  
The original and ARIMA residual values of the control chart parameters used for 
constructing the statistical process control chart (SPC) are given in Tables 3 and 4, 



Application of SPC for proper processing of the Fore-Sudetic Monocline copper ore 259 

respectively. In Tables 3 and 4, X is the mean of individual values and σ is standard 
deviation which is calculated from /1.128MR  formula, where MR  is the average 
moving range value of individual observations. The SPC charts are designed to allow 
determining whether the data come from a process which is in a state of statistical 
control. The individual Shewhart charts of six upgrading copper variables based on the 
original data and residuals obtained from the ARIMA models are presented in Fig. 5. 
Figure 5 compares the individual charts of the Shewhart (left hand side plots), and 
ARIMA residuals (special cause charts, right hand side plots) with additional Western 
Electric rules, which are applied to improve the efficiency of control charts for small 
shifts. The number of the Western Electric rules applied was four. The same run rules 
were used in our previous study (Tasdemir, 2012a). More details regarding the method 
can be found in Montgomery and Runger (2011). A common calculation is to plot the 
SPC with z-score when comparing multiple control charts. Therefore, the numerical 
values of the original and ARIMA residual data set in Fig. 5 were presented as z-score 
values. The z-scores standardize ±3σ values. The calibrated z-values of control charts 

presented in Fig. 5 were calculated from formula XUCL X
σ
−  for the upper control 

limit and XLCL X
σ
−  for the lower control limit.  

Table 3. Individual Shewhart’s chart parameters of Cu upgrading variables 

Chart parameters α β ϑ γ ε εo 
Upper control limit, UCLX ( 3 )X σ+  1.942 26.81 0.284 7.199 91.676 96.219 

Mean of individual values ( )X  1.726 24.85 0.222 6.117 87.903 95.319 

Lower control limit, LCLX ( 3 )X σ−  1.508 22.89 0.159 5.035 84.129 94.419 

Average of moving average ( )MR  0.082 0.736 0.024 0.407 1.419 0.338 

( )128.1/MRσ  0.072 0.652 0.021 0.361 1.258 0.300 
2σ  0.144 1.305 0.042 0.722 2.516 0.600 
3σ  0.216 1.956 0.063 1.083 3.774 0.900 

Table 4. ARIMA residual chart parameters of Cu upgrading variables 

Chart parameters α β ϑ γ ε εo 
Upper control limit, UCLX ( 3 )X σ+  0.244 2.063 0.077 1.205 4.694 0.975 

Mean of individual values ( )X  0.002 –0.019 –0.0003 0.016 0.025 –0.013 

Lower control limit, LCLX ( 3 )X σ−  –0.239 –2.1 –0.077 –1.173 –4.644 –1.001 

Average of moving average ( )MR  0.091 0.783 0.029 0.447 1.755 0.371 

( )128.1/MRσ  0.081 0.694 0.026 0.396 1.556 0.329 
2σ  0.161 1.388 0.052 0.793 3.112 0.659 
3σ  0.242 2.081 0.077 1.189 4.669 0.988 
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X - Individual Chart for Cu recovery in concentrate
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Fig. 5. Comparison of Shewhart’s chart of original data (left) and ARIMA residuals (right)  

with unusual points determined by run rules 
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From Fig. 5, it can be seen that the number of out-of-control points on the original 
and residual SPC charts are different. Higher number of out-of-control points are 
given on the SPC charts (Fig. 5, left), which only assume the independence of data and 
use original data values. From 93 individual observations unusual points were 
determined as 18 for α, 19 for β, 16 forϑ, 25 for γ, 14 for ε and 28 for εo by applying 
the run rules. On the other hand, the residual charts (Fig. 5, right), which consider the 
autocorrelation give less uncontrolled data points: 2 for α, 4 for β, 4 for ϑ, 1 for γ, 7 
for ε and 3 for εo. This clearly indicates that wrong decisions can be made about 
uncontrolled number of process variables, when the data used are autocorrelated. 
Therefore, if there is any autocorrelation between the consecutive observations it 
should be taken into account during the process control of the Cu beneficiation 
variables. The autocorrelation effect on the SPC charts was already shown as the 
important factor in some mineral processing and mining applications (Samanta and 
Bhattacherjee, 2001; Bhattacherjee and Samanta, 2002; Samanta, 2002; Elevli et al., 
2009; Tasdemir, 2012a; 2013). Also, the performance of the Shewhart individual chart 
was shown to be better for weak positive and negative autocorrelation, and it is 
advisable only for small values of autocorrelation (Karaoglan and Bayhan, 2011; 
Tasdemir, 2013). 

Conclusions 

The methodology for monitoring a plant scale copper flotation process was proposed. 
The technique was based on the statistical quality control charts used to monitor the 
process and detect shifts in values of its variables. As in the many modern applications 
of statistical process control charts, the autocorrelation has an important effect on 
mining and mineral industry data and it should be considered. When the data are 
autocorrelated the wrong decisions can be made about uncontrolled number of process 
variables. If there is any autocorrelation between the consecutive observations, it 
should be taken into account during the process control of the Cu beneficiation 
parameters. 

The data showed that copper upgrading variables obtained during the beneficiation 
of the copper ore from the Fore-Sudetic Monocline (SW Poland) were autocorrelated 
over time. It was shown that the typical Shewhart charts are inappropriate for 
controlling the upgrading variables of the copper ore due to the existence of 
autocorrelation. The autocorrelation can be described by the suitable ARIMA time 
series models. It was found that the upgrading variables of copper content in feed, 
concentrate, product yield and non-copper components recovery in concentrate can be 
modelled by the ARIMA(0,1,1), while copper content in tailing and copper recovery 
in concentrate were described by the AR(1).  

It was determined that the standard control charts are not capable of detecting right 
unusual points of the copper ore upgrading variables, when the data are autocorrelated 
from one time period to the next one. Usage of the residual charts is more suitable to 
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monitor or control the Cu ore upgrading variables, since the residuals resulted from 
the ARIMA models consider the dynamics of the process. Since the time series are 
often used for near future estimation aims, the ARIMA models developed in this 
research to remove autocorrelation of the Cu upgrading variables can be considered as 
a useful tool for the short-term process control functions.  
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