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Settling velocity is an independent variable of the hydraulic separation performed for instance by 
means of jigs. Therefore, the settling velocity characterizes material forwarded to the separation 
process. 

The paper presents a method of determining the distribution of settling velocity in the sample of 
spherical particles for the turbulent particle motion in which the settling velocity is expressed by the 
Newton formula. Because it depends on density and size of particle which are random variables of 
certain distributions, the settling velocity is a random variable. Applying theorems of probability, 
calculations concerning the functions of random variables, formulas for the frequency function of 
settling velocity and the distribution of velocities for several combinations of distributions of particle 
sizes and densities were presented. 

 
Key words: settling velocity, distribution of settling velocity, random  variables, function of random  
    variables 

 
INTRODUCTION 

 
Terminal velocity of particle is the settling velocity in the uniform motion, when 

the geometrical sum of all forces acting upon the particle is equal to zero. There are 
many methods of determining terminal velocity (Sztaba,1992). In this paper a 
theoretical method resulting  from the solution of the particle motion equation will be 
used. In the turbulent motion, the force of resistance is expressed by Newton’s 
formula. Therefore the force balance equation and the terminal settling velocity are as 
follows (Finkey,1924, Sztaba, 2004): 
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relative density, d – particle size, g – acceleration due to gravity, ρ - particle density, 
ρo – liquid density, v – terminal settling velocity of a spherical particle. 

It results from Eq.(2) the settling velocity of the spherical particle is a function of 
particle size, its density and properties of the medium in which the particle motion 
takes place (ρo, µ). During separation of heterogeneous materials (from the point of 
view of their physical and geometrical properties – such as enrichment of coal and 
ores), both the particle size and its density are random variables of fixed distributions. 
As a result the particle settling velocity will be a random variable being a function of 
random variables such as particle density and size. The form of distribution of this 
random variable results from Eq.(2) and distributions of particle size and density. This 
paper presents methods of calculating spherical particle settling distribution according 
to Newton’s formula because separation in classifying devices including jig takes 
place in a turbulent motion, for which the particle settling velocity is calculated from 
Eq.(2).  

 
THE DISTRIBUTION OF SETTLING VELOCITY ACCORDING  

TO NEWTON’S FORMULA 
 

The reduced relative density of particle x occurs in the formulas of particle settling 
velocity as: 

 
0

0

ρ
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Therefore:  
  )(00 xx ρρρρ =+=  (4) 
 

If the random variable ρ  has the distribution expressed by a frequency function 
)(ρf , the frequency function of the random variable X is expressed according to the 

theorem of functions of random variables (Gerstenkorn and Śródka, 1972) by the 
following formula: 

 [ ]
dx
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The random variable 2
1

X , according to the same theorem, will have the following 
distribution: 

 

a) 2
1

1 XY =           )( 1
2
1 yxyx ==  

 
  ( )[ ] 11112 2)( yyxfyf =   (6a) 
 
  ( ) 1

2
1112 2)( yyxfyf ==   (6b) 

 
Analogically, the random variable D occurs in Eq.(2) to 0.5 power. If )(dg is the 

frequency function of variable D, the random variable 2
1

2 DY =  will have the 
following distribution:  
  ( )[ ] 2222 2)( yydgyf =   (7a) 
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According to the above transformations, the particle settling velocity, as the 

random variable V, will be expressed by the following formula: 
 

 V = 4,43Y1Y2   (9) 
Denoting:  
 
 W = 4,43Y1  (10) 

 
formula (9) will take the form:  
 
 V =WY2 (11) 

 
and the distribution of the random variable W  is: 
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As it can be seen from Eq.(11), settling velocity is the product of two random 

variables. The frequency function of the random variable, which is the product of two 
independent random variables  S = T U, is expressed by the following formula 
(Gerstenkorn and Śródka, 1972): 
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where: 1f  and 2f  are the frequency functions of random variables T and U, 
respectively. According to Eq.(14), the frequency function of settling velocity is:  
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DISTRIBUTION OF SETTLING VELOCITY FOR LINEAR DISTRIBUTIONS 

OF PARTICLE DENSITY AND SIZE 
 

As an example, we calculated the distribution of settling velocity for four 
combinations of linear frequency functions of particle size and density. 

1. The sample contains mostly fine particles of low density for the ranges of 
particle size and density given below:  
 
 ( ) 31011085,054,5)( ⋅+−= ddg      for  ]02,0;001,0[∈d   (16) 
 
and 37 10445,21089,8)( −− ⋅+⋅−= ρρf     for  ]2750;1250[∈ρ   (17) 
 
where d is expressed in [m] while ρ  in [kg/m3]. Both functions are normalized to 1, 
 

i.e.: ∫ =
02,0

001,0

1)( dddg    and    ∫ =
2750

1250

1)( ρρ df . 

 

The cumulative distribution functions of particle size and particle density are 
presented in Figs 1 - 2. 
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Fig. 1. Cumulative distribution function of particle size 

 

 
Fig. 2. Cumulative distribution function of particle density 

 
In order to calculate the distribution of settling velocity for Newton’s range  

(Eq.15), the distributions f1(x), f2(y1), f3(y2), f4(w) and ⎟
⎠
⎞

⎜
⎝
⎛

w
vf3 should be calculated. 

Function f1(x), according to Eqs (5b) and (17), is equal to: 
 
 f1(x) = -0,889x+1,556             ]75,1;25,0[∈x   (18) 

 
Function f2(y1), according to Eq.(6b), is as follows:  
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3
112 112,3778,1)( yyyf +−=          ]32,1;5,0[1∈y  (19) 

 
Function  f3(y2), according to Eq.(7b), is: 
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2

3
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Function f4(w), according to formula (12b), is equal to:  

 

 wwwf 16,01062,4)( 33
4 +⋅−= −  ]848,5;215,2[∈w   (21) 

 

Substituting distributions f4(w) and ⎟
⎠
⎞

⎜
⎝
⎛

w
vf3  into Eq.(15b), after integration and 

normalization to 1, the following formulas for the frequency of settling velocity and 
cumulative distribution functions are obtained:  
 

 vvvh 23,2212,117)( 3 +−=   ]44,0;07,0[∈v  [m/s]  (22) 
 

 054,0113,1128,29)()( 24

07,0
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Figure 3 presents the cumulative distribution function of settling velocity. As it can 

be seen in Fig.3, the largest fraction is constituted by the particles whose settling 
velocity is placed in the middle of the range of obtained values.  
 

 
Fig. 3. Cumulative distribution function of  particle settling velocity according to Eq.(23) 
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2. The sample contains mostly fine particles of high density. The normalized 
frequency functions of particle size and density are:  

 
  g(d) = (-5,54d + 0,11085)⋅103    for ]02,0;001,0[∈d   (24) 

 

 37 1011,11089.8)( −− ⋅−⋅= ρρf       for  ]2750;1250∈ρ    (25) 
 

Their cumulative distribution functions are shown on Figs 4 - 5.  
 

 
Fig. 4. Cumulative distribution function of particle size 

 

 
Fig. 5. Cumulative distribution function of particle density 

 
Acting as in the section 1, the normalized frequency of settling velocity and the 

cumulative distribution functions are as follows: 
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 vvvh 58,11588,32)( 3 +−=       ]605,0;07,0[∈v    [m/s]  (26) 
 

  028,079,5147,8)( 24 −+−= vvvH  (27) 
 

Figure 6 shows the cumulative distribution function of settling velocity. A 
comparison of Figs 3 and 6 indicates that in both cases the particles with the settling 
velocity in the middle range of obtained velocities are prevailing. However, in the 
second case the value of the maximum velocity is higher.  

 

 
Fig. 6.  The cumulative distribution function of settling velocity, according to Eq.(27) 

 
3. The sample contains mostly large particles of low density. The normalized 

frequency functions can be expressed by the equations:  
 
 g(d) = 5,54⋅103d – 5,54          for  ]02,0;001,0[∈d   (28) 
 

 37 10445,21089,8)( −− ⋅+⋅−= ρρf     for  ]2750;1250[∈ρ   (29) 
 

For these distributions, and according to the above algorithm, the frequency of  
settling velocity and the cumulative distribution functions are given by the formulas:  

 

 vvvh 618,1137,99)( 3 −=         ]467,0;07,0[∈v   [m/s] (30) 
 

  004,0809,0784,24)( 24 −−= vvvH   (31) 
 

Figure 7 presents the graph of the cumulative distribution function of settling 
velocity. 
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Fig. 7. Cumulative distribution function of settling velocity according to Eq.(31) 

 
For the distributions of particle size and density given in Eqs (28)-(29) the particles 

of higher settling velocities dominate in the sample. 
4. The sample contains mostly large particles of high densities. The frequency 

functions of particle size and density are given by:  
 

 g(d)=5,54⋅103d – 5,54              for ]02,0;001,0[∈d   (32) 
 

 37 1011,11089,8)( −− ⋅−⋅= ρρf      for  ]2750;1250[∈ρ   (33) 
 

The cumulative distribution functions are presented in Figs 8-9. 
 

 
 Fig. 8. Cumulative distribution function of particle size 
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 Fig. 9. Cumulative distribution function of particle density 

 
The calculated frequency and the cumulative distribution functions of settling 

velocity are as follows:  
 

 vvvh 483,0563,26)( 3 −=  ]636,0;07,0[∈v  [m/s]  (34) 
 

  24 2415,0641,6)( vvvH −=   (35) 
 
Figure 10 presents the cumulative distribution function of  settling velocity 

according to Eq.(35). 
 

 
Fig. 10. The cumulative distribution function of settling velocity according to Eq.(35) 
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It can be seen in Fig.10, that the distributions of geometrical and physical 
properties, determined by Eqs (32) and (33), the particles of higher settling velocity 
dominate in the sample, analogically to the case considered in section 3. However, the 
maximum value of settling velocity is higher.  

 
CONCLUDING 

 
The presented in this work methods of determining the distributions of particle 

settling velocities are valid for random variables of stochastically independent of  
particle size and density. Numerous investigations of this issue prove independence of 
these random variables  (Brożek, 1993, Tumidajski, 1997). 

In order to determine the distribution of settling velocity of irregular particles it is 
necessary to consider their shape. The investigations indicate that the distributions of 
shape coefficients of coal particles are of the so-called gamma type (Brożek and 
Turno, 2004, Hodenberg, 1998). Also the distributions of particle size and density in 
case of fine coal particles (Brożek and Surowiak, 2004) are independent. 

Distribution of settling velocities is the main parameter of hydraulic classification 
applied for fine coal separation in which the motion of particles is of turbulent 
character. Presented in the paper simulation of distribution of settling velocity as a 
function of distribution of particle size and density describes the velocity distribution 
changes due to sample characteristics. The distribution of settling velocity affects the 
separation efficiency measured by the probable error, determined by means of the 
densimetric analysis. 

 

This work was performed as a part of the University of Science and Technology Research 
Program No.10.10.100.955 project. 
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Prędkość opadania jest argumentem rozdziału procesu wzbogacania w osadzarce. Rozkład prędkości 
opadania stanowi więc charakterystykę materiału kierowanego do procesu wzbogacania.  

W artykule przedstawiono metodykę wyznaczania rozkładu prędkości opadania w próbce ziaren 
sferycznych dla turbulentnego charakteru ruchu ziaren, w którym prędkość opadania wyraża się wzorem 
Newtona-Rittingera. Ze względu na to, że zarówno gęstość jak i wielkość ziarna są zmiennymi losowymi 
o pewnych rozkładach również prędkość opadania jako funkcja tych zmiennych jest zmienną losową. 
Korzystając z twierdzeń rachunku prawdopodobieństwa odnoszących się do funkcji zmiennych losowych 
podano wzór na funkcję gęstości rozkładu prędkości opadania oraz wyliczono rozkłady prędkości dla 
kilku kombinacji rozkładów wielkości i gęstości ziarna.  
 


